大家好,今天小编关注到一个比较有意思的话题,就是关于python作业评比教程的,于是小编就整理了1个介绍Python作业评比教程的解答,让我们一起看看吧。
想自学大数据,不知道从哪里学起,有什么书籍和学习路线推荐么?
谢邀!笔者刚签约大数据挖掘工程师岗位,也是在研究生阶段才转为大数据方向。大数据目前正火热,很多同学想要转入,但学习路线对于自学的人来讲因人而异。
拿自身举例,笔者之前是Python数据分析出生,编程能力一般,因此在这个基础上先学习linux基本操作命令,安装ubuntu双系统并进一步安装Hadoop和Spark组件,在此基础上利用Pyspark操作Spark大数据框架进行学习。可以推荐如下书籍:
《Pyspark实战指南》
而要完全进入大数据领域还不够,因为大数据框架比较侧重开发,所以需要有scala语言功底(scala语言是Spark的原生语言),而scala语言跟java关联性很强且完全兼容,所以如果有一定Java基础的话完全可以从scala入手,推荐的书籍如下:
《Spark编程基础(scala版)》
视频教程强烈推荐林子雨老师在MOOC慕课上的国家精品免费课程,由浅入深,非常容易上手。
随着互联网的发展,大数据开发是一个比较不错的选择,未来的发展趋势是大数据人工智能,而大数据开发有两个发展方向:一是大数据平台开发,二是大数据应用开发。由于大数据所需要的技术知识比较复杂,想要自学大数据是比较困难的。
其实,零基础小伙伴想学习大数据开发技术,大数据培训是一个比较不错的选择,当然了,小伙伴可以根据自身的基础条件来选择适合自己的学习方式,小伙伴想要自学大数据开发,好的学习路线是必不可少的。
1.学习大数据相关基础知识
学习大数据开发对于零基础小伙伴来讲,在初级阶段肯定是要积累基础知识学习的,学习大数据开发技术知识,需要JAVA、Python等编程语言基础,着几种编程语言都是比较容易入门的。
小伙伴通过什么方式学习基础知识呢?小伙伴可以通过大数据***的搜索来获取相关***进行学习,为什么不推荐看书学习呢?在书本上只是学习到了相关的知识结构,并没有大数据***讲的细致,而且还能做到交叉知识点的讲解。
2.学习相关大数据开发知识
小伙伴学习入门了编程基础,接下来的阶段是相关大数据开发平台的知识学习,建议小伙伴可以从Hadoop和Spark开始学起,这两个平台的应用是比较广泛的。在学习大数据开发过程中,小伙伴还需要了解Linux系统的学习,企业对大数据开发人员的要求是熟练掌握Linux系统。
小伙伴在学习大数据开发过程中,不能只学习基础知识,更重要的是项目实战案例的练习,小伙伴可以通过项目实战来深入理解大数据开发技术知识。
大数据是一个比较复杂的编程学科,不仅需要有编程基础,还需要有较强的思维逻辑能力能力,是比较适合理工科学习的一项编程技术,当然也并不是说理工科外的小伙伴不能学,两者的差距是接受能力的强弱。尚硅谷大数据培训是全程面授教学,以理论实践相结合的教学方式传授大数据开发技术知识,让小伙伴在学习大数据开发技术知识的同时,积累更多的项目实战经验。
随着互联网技术的发展,大数据行业前景非常被看好,有很多朋友对大数据行业心向往之,却苦于不知道该如何下手,或者说学习大数据不知道应该看些什么书。作为一个零基础大数据入门学习者该看哪些书?今天就给大家分享几本那些不容错过的大数据书籍。
1、《数据挖掘》
这是一本关于数据挖掘领域的综合概述,本书前版曾被KDnuggets的读者评选为最受欢迎的数据挖掘专著,是一本可读性极佳的教材。它从数据库角度全面系统地介绍数据挖掘的概念、[_a***_]和技术以及技术研究进展,并重点关注近年来该领域重要和最新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。
2、《Big Data》
这是一本在大数据的背景下,描述关于数据建模,数据层,数据处理需求分析以及数据架构和存储实现问题的书。这本书提供了令人耳目一新的全面解决方案。但不可忽略的是,它也引入了大多数开发者并不熟悉的、困扰传统架构的复杂性问题。本书将教你充分利用集群硬件优势的Lambda架构,以及专门用来捕获和分析网络规模数据的新工具,来创建这些系统。
3、《Mining of Massive Datasets》
这是一本书是关于数据挖掘的。但是本书主要关注极大规模数据的挖掘,也就是说这些数据大到无法在内存中存放。由于重点强调数据的规模,所以本书的例子大都来自Web本身或者Web上导出的数据。另外,本书从算法的角度来看待数据挖掘,即数据挖掘是将算法应用于数据,而不是使用数据来“训练”某种类型的机器学习引擎。
大数据可以自学,有J***a开发经验的童鞋可以挑战一下。大数据主要学习三个平台Hadoop、Spark、Storm。不过因为大数据技术体系庞大复杂,不同的就业方向使用的技术差异也比较大,加之作为比较新的技术网上的学习***很少,自学难度大,零基础建议报班培训学习。
推荐书籍:
《Effective J***a中文版》
《Big Data》
《Hadoop权威指南》
《Hive编程指南》
《Learning Spark》
《Spark机器学习:核心技术与实践》
自学大数据可以学习哪些内容?有哪些书籍推荐?
作为一名IT从业者,同时也是一名教育工作者,我来回答一下这个问题。
首先,要自学大数据还是具有一定难度的,大数据不仅内容比较多,难度比较高,同时还需要学习者具有一定的场景支撑,比如数据中心等等,所以初学者自学大数据通常需要按照三个阶段来安排学习***。
学习大数据的第一个阶段要根据自身的知识基础和发展方向来完成一些基础知识的学习,不论是从事大数据开发还是大数据分析,都需要具有一定的程序设计基础,初学者从J***a和Python开始学起都是不错的选择。J***a的前期学习难度要大一些,Python则要相对简单一些,而且目前Python语言在大数据领域的应用前景也比较广阔。
学习大数据的第二个阶段是掌握大数据平台的相关知识,大数据领域的诸多岗位任务都离不开大数据平台的支撑,所以学习大数据平台是学习大数据技术的重要环节。学习大数据平台可以从Hadoop和Spark开始学起,一方面这两个平台是开源平台,另一方面这两个平台的应用范围也比较广泛,相关的学习案例也比较多。
相对于编程语言来说,大数据平台的内容相对比较多,而且也具有一定的难度,往往还需要初学者具备一定的Linux操作系统知识,所以如果自身的计算机基础知识比较薄弱,那么也可以从Linux操作系统开始学起。
学习大数据的第三个阶段就是实践阶段,实践阶段最好能够在实习岗位上来完成,一方面实习岗位能够提供场景支撑,另一方面在实习岗位上也更容易与有经验的技术人员进行交流学习。
我从事互联网行业多年,目前也在带机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
到此,以上就是小编对于python作业评比教程的问题就介绍到这了,希望介绍关于python作业评比教程的1点解答对大家有用。